Poster	Title	Authors	Abstract
1	Maine Aquaculture Innovation Center's role in Maine aquaculture, 2006-2021	Abby Gray, Anne Langston Noll & Chris Davis, Maine Aquaculture Innovation Center	To inform how to best focus funding in the future, this project documents how past funding by the Maine Aquaculture Innovation Center (MAIC) has supported aquaculture in Maine by informing the industry, inspiring research, creating educational opportunities, and contributing to growth in the value and extent of aquaculture in Maine. Through a synthesis of data from Maine Department of Marine Resources, MAIC funding data, as well as a survey and interviews of MAIC grantees, this project will assess the impacts of MAIC funding to date. Conclusions will guide future MAIC support and also guide the aquaculture research and development community more broadly.
2	How different environments facilitate scallop growth and influence profitability	Beatrice Johnson, Tom Kiffney, Struan Coleman & Damian Brady, all of University of Maine	Atlantic sea scallop (<i>Placopecten magellanicus</i>) aquaculture is a growing industry in the state of Maine. With the rise in aquaculture, farmers need better information on how to best site their farms and on the time it will take to bring scallops to market. The Sea Scallop Aquaculture Budget Tool can be used to economically analyze scallop farms based on farm size, costs and expenses, business and loan characteristics and key biological factors. A key factor in analyzing economic success for farms is the "months to market size" variable. We used an earlier study of scallop growth rates at four Maine scallop farms to improve estimates of the 'months to market size' variable, considering how it varied with location. We also linked these estimates to site-based environmental data at each location. Together, these analyses enabled us to assess the estimated time to profitability for different farm location across Maine.

3	Comparing oyster feeding rates on live	Jack Rigazio, Robert Cuddy, &	Shellfish aquaculture is used to produce food, enhance
	versus frozen algae cells	Damian Brady, all of University of	habitat quality and diversify coastal livelihoods in Maine
		Maine	and beyond. This study investigates a way in which
			shellfish production efficiency may be increased, to
			better meet demand. Currently, many shellfish
			hatcheries feed young shellfish nutrient rich non-motile
			algae in the form of a frozen paste. Non-motile cells
			can be frozen and reconstituted, offering a
			considerable advantage to hatcheries. However, the
			rate at which American oysters feed on live, motile
			cells versus non-motile algal cells is not well known.
			We aim to determine whether there is a significant
			difference between the feeding rates of American
			oysters (Crassostrea virginica) on live, motile algal
			cells and non-motile cells by feeding them chlorophyll
			concentrations of 1, 2.5, 5, 25, and 50 μ g chla/l.

ABSTRACTS 2021 SEA Fellows Summer Science Symposium

		1	
4	Improving methods to survey eelgrass with Remotely Operated Underwater Vehicles (ROVs)	James Greenwood (1), Elisabeth Maxwell (1), JoAnna Shaw (1,2) & Damian Brady (1), where 1. University of Maine and 2. Hobart and William Smith Colleges	Eelgrass (<i>Zostera marina</i> L) is a flowering seagrass that serves as a foundation species in subtidal marine ecosystems by providing habitat for larval species of commercial fish. Eelgrass also contributes to shoreline protection. In Maine, eelgrass has been surveyed by the Department of Marine Resources (DMR) twice [in what years] through aerial photography and visual observation above water. In this project, we tested the feasibility of using a Remotely Operated Underwater Vehicle (ROV) to conduct an eelgrass survey. An experimental site near Fort Island in Boothbay, Maine was chosen based on published DMR survey data where eelgrass was last said to be present. Several methods were tested to document the precise location of eelgrass beds and to determine the efficacy of using the ROV to document the presence of eelgrass. Based on our work, best practices are offered to field researchers who wish to use this technology in the future.

ABSTRACTS 2021 SEA Fellows Summer Science Symposium

ABSTRACTS 2021 SEA Fellows Summer Science Symposium

6	Comparative Analysis of <i>Primnoa</i> <i>pacifica</i> , Red Tree Coral, spermatocyst size before versus after thermal variability events	Jocelyn Cooper, Julia Johnstone, & Rhian Waller, all of University of Maine	Cold-water corals in the deep ocean can be a keystone species, a habitat forming organism supporting other species that are vital to the health of the ecosystem. Recent research data collected from the coral <i>Primnoa pacifica</i> communities indicates thermal variability has adversely impacted reproduction and growth in shallow fjords. However, this species primarily lives in the deep sea, where impacts are unknown. We propose to investigate if there is a difference in deep population spermatocyst production before versus after a thermal variability event passed through the Gulf of Alaska (GOA) from 2013-2015. We are reviewing previously collected samples from two deep-water sites in the GOA collected in 2013 and 2015. This comparative analysis hopefully will help predict the impact of global climate

8 A guide to recreational shellfishing in Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Brunswick (2), & Dan Devereaux (2), where 1. University of Maine, 2. Town of Maine, there is no guide to recreational shellfish resources differently. For example in Brunswick, harvesting is illegal when water is over the mud flats and it can be illegal to dig when there is excessive rainfall. We created this guide by using resources such as the Maine Shellfish Handbook and interviewing the Brunswick Marine Warden. A Guide to Shellfishing in Brunswick Warine Warden. A Guide to Shellfishing in Brunswick Will help sustain the area's shellfishing resource. This guide can be accessed
via the Town of Brunswick website.

ABSTRACTS
2021 SEA Fellows Summer Science Symposium

9	Understanding eDNA Data through environmental measurements and nutrient analyses	Megan Alberding (1, 2), Sean O'Neill (1), Rachel Presley (1), & Jeremy Rich (1), where 1. University of Maine, 2. Wesleyan University	Environmental data provide context for interpreting eDNA samples, and ecological change, through time. Measurements taken monthly from October 2020 through July 2021 using a Sonde instrument on eDNA cruises in both the Damariscotta River estuary and Damariscotta Lake indicate seasonal and overall climatic changes through time. As factors such as temperature, turbidity, dissolved oxygen, salinity, and PAR seasonally change and are overall impacted by climate change, nitrogen availability and chlorophyll abundance (a proxy for primary productivity) in the water vary. Examining associations among these environmental data and eDNA information are important in order to understand ecosystem dynamics. This information, once analyzed, will help advance ecological understanding and support ecosystem- based management.
10	Exploring strategies to reduce post- harvest mortality in the Maine and Canadian lobster fisheries	Adelaide Mullin (1,2), Cassandra Leeman (1), & Damian Brady (1) where 1. University of Maine, 2. Bard College at Simon's Rock	Maine's lobster industry contributes to local economies and communities. As a lobster travels from trap to dealer in Maine, post-harvest mortality leads to 2-8.6% loss of marketable stock. Comparatively, the Canadian fishery suffers from a lower post-harvest/transport mortality rate. With this study, we seek to understand what factors cause the mortality rate differences between the Canadian and Maine fisheries and to identify possible strategies to reduce post-harvest mortality further.

11	Prey preference of American lobster larvae (<i>Homarus americanus</i>) in the Gulf of Maine's pelagic food web	Patrick, E.(1), M. Spencer (2), M. Niemisto (3) R. Lasley-Rasher (2), D. Fields (3), R. Wahle (1), A. Ascher (1) where 1. University of Maine, 2. University of Southern Maine, 3. Bigelow Laboratory for Ocean Sciences	Research suggests that recent declines in recruitment of the American lobster (<i>Homarus americanus</i>) may be driven by climate-related changes in the pelagic food web. Understanding preferences of larval lobster for zooplankton prey is therefore important to help provide insight into the trophic linkages among these species. We are conducting controlled grazing experiments to determine the preferences of four larval stages of lobster for specific copepods commonly found in the Gulf of Maine. In six-hour prey choice experiments, larvae will be offered equal numbers of three different prey species at high densities. We predict that larvae will preferentially consume the most energy-rich species, <i>Calanus</i> <i>finmarchicus</i> , as they have a greater nutritional value compared to <i>Acartia</i> and <i>Temora</i> .

	1		
12	Density dependent growth factors and	Sophie Swain (1), Kathleen	In fish farming, and specifically in recirculating
	their effect on American glass eel	Marciano (2), Sara Rademaker	aquaculture systems (RAS), the densities in which fish
	growth rates	(2), where 1. University of Maine,	are stocked can have a direct effect on growth rates
		2. American Unagi	and the ability of fish to reach target weights. Standard
			growth rates (SGRs) can be assessed through
			regular sampling. Feed conversion ratios (FCR),
			together with SGR data, allow fish farmers to predict
			with a higher degree of accuracy the target amount of
			feed required to maximize growth. When the correct
			species-specific ratio is achieved, biomass increase is
			predicted to follow. While this theory is straightforward,
			in practice, both biotic and abiotic factors influence the
			success of RAS. This project focuses on how
			stocking density of juvenile American Glass Eels
			influence performance. We predict that eels stocked at
			lower densities will perform better than those stocked
			at higher densities.

13	Developing eDNA tools to count	Claire Volk (1), Robin Sleith (2),	The increased prevalence of harmful algal blooms in
	harmful algae in Maine waters	Sydney Greenlee (3,2), & Pete	the northeastern United States necessitates inquiry
		Countway (2), where 1. University	into the population, community, and toxicity dynamics
		of Southern Maine, 2. Bigelow	of potentially toxic organisms like <i>Dinophysis</i> spp.
		Laboratory for Ocean Sciences, 3.	Several species of this genus of dinoflagellate are
		University of Maine	known to produce the toxins responsible for diarrhetic
			shellfish poisoning (DSP). A qPCR assay accurate to
			the species level would allow for the cost-effective
			quantification of <i>Dinophysis</i> in environmental water
			samples. The ITS region of single-cell Dinophysis spp.
			picks from the Gulf of Maine were amplified and
			sequenced for species identification and primer
			design. An alignment of these and GenBank
			sequences was used for the development of qPCR
			primers and probes to quantify <i>D. norvegica</i> and the
			<i>D. acuminata</i> complex. Given inter and intraspecific
			variability in toxicity, these assays will complement
			toxicity and environmental DNA work in elucidating
			how populations of these species respond to predator
			and prey dynamics during algal bloom events.

14	Surmounting methodology hurdles in	C. Morris (1), A. Ascher (1), P.	High-throughput DNA sequencing is gaining wide
	the use of eDNA to study food web	Countway (2), D. Fields (2), R.	application as a powerful molecular tool to reveal the
	interactions of American lobster larvae	Wahle (1), where 1. University of	species composition of marine communities and food
	(Homarus americanus)	Maine, 2. Bigelow Laboratory for	webs. As part of a larger study to evaluate trophic
		Ocean Sciences	interactions of larval American lobster (Homarus
			americanus) in the pelagic food web, we are
			developing methodology to characterize the
			components of the lobster larval diet. Here we optimize
			the application of a lobster-specific blocker to reduce
			host DNA interference and allow for the identification of
			larval stomach contents. First, we determine optimum
			concentrations of the lobster-blocker to balance host
			DNA suppression against the need to detect prey
			taxa. Next, cross-reactivity of the blocker is
			determined by analyzing DNA expression of lab-
			reared larvae fed on a known diet to determine
			whether the blocker selectively suppresses DNA from
			prey taxa more closely related to lobster (e.g., other
			crustaceans). These experiments will help establish
			protocols for the application of future DNA sequencing
			in trophic ecology studies.

ABSTRACTS 2021 SEA Fellows Summer Science Symposium

16 Do seed oysters grow better in OysterGro or Zapco Cages and how does oyster density effect growth? Emily Rand (1), Scarlett Tudor (1), Annie Fagan (2), & Meredith White (1,2), where 1. University of Maine, 2. Mook Sea Farm Emily Rand (1), Scarlett Tudor (1), Annie Fagan (2), & Meredith White (1,2), where 1. University of Maine, 2. Mook Sea Farm Salinity, food availability, and water flow). We tested seed growth in Eastern oysters (Crassostrea virginica) in two gear types: OysterGro and Zapco cages (n=3 cages per type). OysterGro cages are suspended in surface waters by air-filled floats. Zapcos are intertidal cages that tumble seed as they rise and fall with tides. We simultaneously examined how stocking density influenced growth. (n=3 density levels). At six and nine weeks post-deployment, oyster seed were graded by size to assess growth. Week Six results indicated that low stocking density in Zapco produces the fastest seed growth. Our results will help inform decisions about which gear type and stocking density are most likely to produce fastest seed growth at a site.	OysterGro or Zapco Cages and how does oyster density effect growth? Maine, 2. Mook Sea Farm Annie Fagan (2), & Meredith White (1,2), where 1. University of Maine, 2. Mook Sea Farm Maine, 2. Mo				
		16	OysterGro or Zapco Cages and how	Annie Fagan (2), & Meredith White (1,2), where 1. University of	seed, include type of aquaculture gear used and the environmental conditions at a site (e.g., temperature salinity, food availability, and water flow). We tested seed growth in Eastern oysters (Crassostrea virginica) in two gear types: OysterGro and Zapco cages (n=3 cages per type). OysterGro cages are suspended in surface waters by air-filled floats. Zapcos are intertidal cages that tumble seed as the rise and fall with tides. We simultaneously examined how stocking density influenced growth (n=3 density levels). At six and nine weeks post-deployment, oys seed were graded by size to assess growth. Week results indicated that low stocking density in Zapco produces the fastest seed growth. Our results will h inform decisions about which gear type and stocking density are most likely to produce fastest seed grow

17	Comparing growth and survivorship of	Hunter Carson (1,2), Kyle	We are investigating how water temperature and
	three commercial shellfish species in		salinity influence growth in three different commercial
	vacant lobster pounds in downeast	where 1. University of Maine, 2.	shellfish species: Eastern Oysters (Crassostrea
	Maine	Downeast Institute, 3. University	<i>virginica</i>), Atlantic surf clams (<i>Spisula solidissima</i>),
		of Maine at Machias	and European Oysters (Ostrea edulis). The three
			species were deployed in 4 mm floating oyster bags at
			each of two sites in Beals, Maine: Flying Place Pound
			and Elmer's Pound. Four replicate bags were
			deployed for each species at each location (n=4 bags
			per species per site). The water temperature in
			Elmer's Pound is colder than the Flying Place Pound,
			which often has surface temperatures greater than 20
			degrees C. We predict that the highest growth rates
			will be found in the pound with the greatest average
			teamperature, while the cooler pound will show
			adequate but lesser growth of these species. We will
			compare the growth and suvrivorship for each species
			at each loaction, as well as the physical parameters of
			temperature and salinity. These results will help
			indicate the viability of a commercial shellfish
			aquaculture oppertunity using vacant lobster pounds in
			downeast Maine.
J			1

18	The effects of different gear types on	Sydney Avena, Christopher Davis,	As Maine's aquaculture industry continues to grow,
	farming Atlantic sea scallops	& Anne Langston Noll, all of the	there is interest in developing innovative and cost
		Maine Aquaculture Innovation	effective techniques for Atlantic sea scallop
		Center	(Placopecten magellanicus) aquaculture. This study is
			assessing four different aquaculture gear types for
			grow-out of farm-raised sea scallops (lantern nets,
			floating bags, bottom cages, and dark sea trays) to
			investigate the influence of these gear on scallop
			growth rates and survival. We also will test the
			influence of depth, as well as the capital cost and labor
			involved in deployment and maintenance of each gear
			type. The information gained from this study will help
			inform farmers' decisions about gear choice and
			location.

19	Are marine ecosystem changes	Katey Gould, Robert Jarrett, &	In recent decades Maine's coastal ecosystem has
15	affecting lobster sheltering behavior in	-	-
			become dominated by benthic algae and lobster
	coastal Maine?	Maine	habitat use has changed. Lobsters naturally seek
			shelters, yet studies conducted at identical sites from
			the 1990s to present day show a shift in population
			density from shelter-providing boulder fields, where
			lobster abundances were historically highest, to less
			topographically complex ledge and sediment habitats.
			Our field and laboratory studies aim to determine
			which environmental factors correspond with these
			observed changes in habitat use, and if sheltering
			behavior is also changing along with the shift in
			0000
			population density. Specifically, we are analyzing data
			collected in the field by SCUBA divers to determine if
			there has been a shift in shelter preference and if this
			correlates with a change in algal cover and population
			distribution. Results from this study will inform future
			research on the population distribution and behavior of
			lobsters.

20	Does the invasive alga Dasysiphonia	Katherine Burnham, Robert	In Maine's coastal ecosystems, declines in American
	<i>japonica</i> impact American lobster	Jarrett, & Robert Steneck,	lobster (<i>Homarus americanus</i>) abundance,
	shelter selection and postlarval	University of Maine	recruitment, landings, and evidence of more randomly
	settlement: experimental methods		distributed populations across habitat types have
			recently been observed. Increases in algal cover may
			be responsible for these changes, particularly of the
			invasive alga Dasysiphonia japonica, a chemically
			defended, filamentous red alga native to Japan but
			increasingly prevalent in the Gulf of Maine following the
			rise in sea surface temperatures. It is possible that
			increased abundances of filamentous algae like D.
			japonica are making critical shelter habitat unsuitable
			to adult lobsters and even postlarval lobsters
			attempting to settle. We investigated the impacts of D.
			japonica on lobster shelter selection and postlarval
			lobster settlement using laboratory and field
			experiments. The aim of this poster is to present our
			experimental methods in detail. Understanding
			possible changes in lobster habitat-use is critical for predicting impacts to one of the most valuable fisheries
			in the U.S.

	1.		
21	Counting lobsters with an underwater	Lydia Harris, Robert Jarrett, &	The aim of this research is to determine population
	robot	Robert Steneck, University of	density and habitat use of the American lobster,
		Maine	Homarus americanus. This research builds off of
			previous lobster population studies using sampling
			done by divers. Over two decades ago, these studies
			found a preference for boulder habitat over relatively
			featureless sediment and ledge. In 2019 there were
			similar lobster densities across all bottom types. The
			current data were collected through video surveys
			taken by an underwater robot, or remotely operated
			vehicle (ROV), at Damariscove Island. The ROV
			allows for much greater coverage area compared to
			diver sampling. From the videos, we determined
			lobster population density, body size, algae cover, and
			depth. Preliminary results indicate the lobster
			population density found using the ROV survey (0.02
			m-2) was lower than diver surveys at similar depths
			(0.39 m-2), and the population density increases with
			depth.

22What type of material do young dulse prefer to settle on?Jillian Galloway, Anne Langston Noll & Chris Davis, all of MaineSeaweed farming is a new and growing industry in Maine. Research is required to develop key nurse	
Aquaculture Innovation Center and grow-out techniques for dulse, a species that currently only wild harvested. This study will asse the success of dulse tetrasporophyte settlement adhesion on a variety of substrates. The substrat used in these experiments are currently in use or being considered for farming another seaweed, s kelp. The study will test spore settlement success at least four substrate types that vary in rugosity (rough and smooth) and material type (textile and plastic). By experimenting with a variety of potent substrates to elucidate optimal spore adhesion, th results of this study will provide valuable informati for local current and prospective dulse farmers. Increasing available information on successful du growth practices will expand seaweed aquacultur add to the diversity of Maine's working waterfront	51 5 5

23	Virtual experiental learning activity gives recognition to algal aquaculture in Maine	Lauren Maeve Trainor, Scarlett Tudor, Carla Scocchi, Melissa Malmstedt, all of University of Maine	The global pandemic has resulted in a demand for innovative virtual learning tools and resources to engage youth from home. The 4-H Summer Learning Series is an interdisciplinary range of workshops and clubs, designed to teach and engage virtually with youth in a range of science topics. We created a workshop that engages youth with the gelling abilities of alginate, a chemical found in the cell walls of kelp. During this activity youth create a lava lamp with multicolored alginate beads in a simple, at-home experiment. Through this activity students gain first hand experience with the properties of algae and learn the ways in which algae is used for a diversity of products. It is beneficial for Maine youth specifically to learn about the kelp that grows off their coastlines and to recognize the growing seaweed aquaculture industry surrounding them.

significant competitive advantage by practicing marked driven as opposed to supply-driven business decision making and planning. Ultimately, the result of this project will inform seaweed farmers about consumer attitudes and preferences, allowing them to produce	24 Better marketing for Maine sea vegetables	Nelson Wu, Anne Langston Noll & Chris Davis, Maine Aquaculture Innovation Center	project will inform seaweed farmers about consumer attitudes and preferences, allowing them to produce the products and volumes that consumers want and to communicate that information to wholesalers and
--	---	--	---